
Augmented Reality
Component System

The framework in brief

Component-based programming framework
Written in C++, uses Qt4/5
Multiplatform: Unix, Linux, Windows
Extensible engine able to load and use at runtime:

• component libraries;

• new data types;

• exogenous component systems.

Introduces simple component and application models.
Website: http://arcs.ibisc.univ-evry.fr

Component model

Similar to Qt’s metaobjects (http://qt-project.org/).
Component inputs: slots, outputs: signals
Communication: synchronous via signal/slot connection

Application model

An application is consisting of two parts:

• A contextual part;

• A configurational part.

A contextual part is composed of:

• A set of component libraries to load;

• A component pool;

• A constant pool.

A configurational part is a set of concurrent processes.
A process is controlled by a statemachine and is composed of a
set of operational configurations (bound to states of statema-
chine) called sheets. A sheet contains:

• pre-connection invocations to configure components;

• connections to set the operational configuration;

• post-connection invocations to run the configuration;

• cleanup invocations to restore component states.

Framework parts

arcsengine: parses and runs application descriptions;

arcslibmaker: library development assistant;

arcswizard: graphical front-end to arcsengine;

arcsbuild: builds component libraries needed by applications;

arcseditor: application graphical editor;

arcs1to2: ports applications and libraries;

libarcs.so|arcs.dll : main library;

libarcsguiw.so|arcsguiw.dll : helper library for gui mode;

ARCSDIR : environment variable needed by arcslibmaker

(should indicate the path where ARCS is installed);

ARCSBUILDPATH : environment variable needed by
arcsbuilder (should indicate the path where compo-
nent library sources are stored).

Extending the engine

Declaring a native component

#i n c l u d e <QObject>

// QObject must be a component a n c e s t o r
c l a s s MyComponent : p u b l i c QObject
{

Q OBJECT // mandatory
p u b l i c :

// mandatory c o n s t r u c t o r
MyComponent (QObject∗ pa r en t=0) ;

p u b l i c s l o t s :
v o i d mySlot () ;

s i g n a l s :
v o i d mySigna l () ;

} ;

Defining a component library (unix systems)

1. Prepare components source files;

2. Run arcslibmaker (produces a project);

3. Edit XML library description (.alx file);

4. Run qmake (produces a makefile);

5. Rum make to compile.

Integrating new data types

Subclass ARCSTypeFactoryTemplate<MyNewType>.

#i n c l u d e <a r c s / a r c s l i b t o o l k i t . h>

c l a s s ARCSTypeFactoryTemplate MyNewType :
p u b l i c ARCSTypeFactoryTemplate<MyNewType>

{
p u b l i c :

v i r t u a l QStr ing getTypeName () const {
// r e t u r n s the type name f o r ARCS

}
p r o t e c t e d :

v i r t u a l MyNewType pa r s e (QStr ing s) {
// r e t u r n s data c on s t r u c t e d from s

}
v i r t u a l QStr ing s e r i a l i z e (MyNewType mnt) {

// r e t u r n s a QStr ing s e r i a l i z i n g mnt
}

} ;

An optional step is to make this data type known by Qt as
well: Q DECLARE METATYPE(MyNewType)

Integrating exogenous component systems

Subclass :

• ARCSAbstractFamily to register the appropriate com-
ponent factories;

• ARCSAbstractComponent to define an ARCS compo-
nent compatible behavior.

Supported native types

void, boolean, int, short, long, float, double,

string, constant, component, size

Special component types

ARCSGeneralLogger: component logger for debugging;

composite: component made of aggregation of components;

script: scripting component using Javascript;

statemachine: process controller (transitions can be trig-
gered by passing tokens via slot setToken(QString));

http://arcs.ibisc.univ-evry.fr
http://qt-project.org/

Command line

arcslibmaker

arcslibmaker [--help] [file]

arcslibmaker has two modes, one for generating ARCS library
wrappers (it needs an xml file describing the library contents),
the second for adding ARCS options to Qt project files.

arcsengine

arcsengine [OPTION]... [XML_FILE]...

Overriding application mode :

-b: simple loop based applications.

-e: event loop based console applications.

-g: event loop based GUI applications.

-t: threaded application.

-te: threaded event based application.

Defining options:

-d: define constants

-p: define a profile

-o: define a file where to dump profile

XML formats and markup hierarchy

+ : at least one, ? : one or none, #: defined elsewhere.

File descriptions

Application (file parsed by arcsengine or libarcs)

application: mode?=base|event|thread|threadevent|gui

context#

processes

process: controller

sheet#: id

Component library (file parsed by arcslibmaker)

library

headers

components?

families?

types?

header+: name

component+: name

family+: name

type+: name, wrapper?

Profile (file parsed by arcsengine or libarcs)

profile

constant+: id, type

Textual serialization of constant

Sub-element descriptions

Context

context

constants?

libraries?

components

constant+: id, type

library+: path

component+: id, type|file

Textual serialization of constant

Textual serialization of component

Sheet

sheet: id

connections

link: source, signal, destination, slot, queued?

preconnections

postconnections

cleanup

invoke: destination, slot, type

Textual serialization of passed invocation data

Component descriptions

Statemachine

statemachine

first: name

last?: name

transitions

transition+: source, token, destination

Composite component

composite

context

sheet#

interface

slots?

signals?

method+: alias, component, method

c© CC-BY-SA 2013 Jean-Yves Didier.

