
A Component Model for Augmented/Mixed Reality Applications with
Reconfigurable Data-flow

Jean-Yves Didier Samir Otmane Malik Mallem
Laboratoire IBISC - Université d’Evry

40, rue du Pelvoux - 91000 Evry - FRANCE
{didier, otmane, mallem}@iup.univ-evry.fr

Abstract

In this paper, we will introduce a new component-
based framework for mixed and augmented reality ap-
plications. We will see the developed framework in-
tends to meet several requirements such as portabil-
ity, variable component granularity, scalability, and a
high level of abstraction for end-users.
The provided framework, at runtime, is composed
of a set of several libraries where components are
stored, an XML file in which configuration and com-
munications between components are described and
a runtime program that deals with the two previous
parts of the system. Our component model can also
deal with reconfigurable data-flows by the use of a fi-
nite state-machine, using several component configu-
rations within an application.

Keywords: system architecture, components,
mixed/augmented reality

1 Introduction

A component-based software architecture is a chal-
lenging area to develop frameworks for MR (Mixed
Reality) applications. During the last years, MR com-
munity has proven the need of an infrastructure. Al-
most 30 different projects of framework have been de-
veloped for AR (Augmented Reality) [5].

Why does such a field of research tends to
use Component-Based Software Engineering (CBSE)
more and more? Augmented reality (AR) or Mixed
Reality (MR) is the way to mix virtual entities with
real world, both being semantically linked. An AR
system can reach this goal by knowing the real world.
This is achieved using several classes of sensorsfor ex-
ample to locate the MR system in the real world. In-
deed, AR is depending a lot on sensor technology and,
since it is a quite new field of research, and is relying
on data-flow processing algorithms that are evolving
quite fast.

This is where CBSE is useful: it can provide compo-
nents for sensors data acquisition, data processing and
rendering of virtual entities. If components have com-
patible inputs/outputs, they would be easily replaced

when the embedded algorithm is deprecated or when
the sensor’s type has changed. This makes CBSE very
attractive for AR.

In this paper, we will expose a new component
based framework, issued from our need in AR,
An application build using this framework will be
composed of three different parts:

• Dynamic libraries where custom components are
stored,

• A file describing how components are connected
to each other,

• A lightweight runtime program that reads the pre-
vious configuration file and manage components.

As we will see, we added to our system a way to recon-
figure dynamically connections between components
by adding a finite state machine. The aim is to produce
a component architecture meeting the requirements of
portability (i.e. running on several operating systems),
variable component granularity (i.e. components can
either be services or be reduced to specific algorithms)
and high levels of abstraction for end-users.

First, we will have a look on existing component-
based frameworks for augmented reality.

2 Customized component-based
frameworks for Mixed reality

Among the numerous projects in this research field
working specifically on modular architectures, we se-
lected some of the more representative projects using
CBSE.

2.1 StudierStube

Studierstube is a project from the Technical Univer-
sities of Vienna and Graz (Austria) designed in 1997.
This framework aims to explore new 3D interaction
media and to find the representation of the desktop 2D
paradigm in 3D. It is based on the OpenInventor API
and is using a distributed scene graph. This project is
embedded two tools based on XML solutions: Open-
tracker [11] for sensors configuration and APRIL

[7]for scenarios prototyping. For our needs, this ar-
chitecture is relying too much on scene-graphs struc-
ture. At the same time, this framework needs some
programmer skills to design an application.

2.2 Tinmith

Tinmith is an AR architecture for outdoor ex-
perience. It provides a serialized data-flow going
from the trackers input to the rendering part (see
figure 1). It introduces a Hardware Abstraction
Layer for the acquiring data [9]. The sensors data
are indeed converted into C++ objects. Tinmith is
based on the implementation, it is in fact a set of low
level primitives enabling the programmer to quickly
access trackers data and displaying them into a 3D
rendering display. Designing an application with
this framework will require some programming skills
hence furnishing no abstraction level at all.

Process object
data flow

Scene graph

Rendering

Hardware
abstraction

D
at

a
fl

o
w

Sensors

Figure 1. Tinmith data-flow.

2.3 DWARF

Started in year 2000, the DWARF (Distributed
Wearable Augmented Reality Framework) project is
based on the concept of collaborating distributed ser-
vices [2]designed for a generic use in Augmented Re-
ality (AR) applications [8][10]. Service are developed
on an extension of a CORBA implementation.

They are described using XML (eXtensible Markup
Language) files and are independent from each other.
They are activated dynamically during application ex-
ecution, forming a distributed data-flow graph. Each
application will use a service manager that will auto-
matically discover where are located over the network
the needed services.

However, this system presents several drawbacks:

• meta-data concerning each service are broad-
casted over the network,

• the granularity of the system is quite large (com-
ponents are already independent systems and not,
for example, specific algorithms),

• this system is dependent of a distributed environ-
ment and might not indicated for the use of small
augmented reality applications.

2.4 AMIRE

AMIRE [1][4] (for Authoring MIxed REality) is a
European joint project between several partners in-
cluding SIEMENS and Fraunhofer AGC. It took place
during 27 months, from 2002 to 2004. The aim was to
develop a rapid prototyping framework for end users
who do not necessarily know how the underlying AR
technology works.

The partners of the project decided to develop from
scratch their own component system to meet some
specific requirements of stand-alone augmented reality
applications. Components are of two different types:
gems and components. Gems are the real components
according to standard software component definition,
whereas components (in this project) are actually an
aggregation of components. In this system, each com-
ponent (gem or component) has a configuration inter-
face, input slots and output slots.

This framework is also including a graphical editor.
It allows a user to connect components to the others
through the interface according to a recorded design
pattern that acts as a guide for people not familiar
with augmented reality applications. The connections
and configurations are recorded in a XML file. This
one is parsed and interpreted by a runtime that will
launch the application. This last system is the one that
is the more similar, in many points, to the system we
will present in this paper but it doesn’t manage the
life cycle of a component, that is to say, it’s life cycle
within an application will be the same as the one of
the application.

In AR systems, some operations must be performed
on real-time. We then wanted something where we
could trigger the data processing when the data are ac-
quired, and not with a delay we cannot determine with-
out a complex algorithm, as it is the case with commu-
nications relying on events or network. In the same
way as AMIRE, we relied on something derived from
direct procedure calls according to Cox and Song tax-
onomy [3] : the signal/slot mechanism. The choice
was then to develop or rely on a component system
that meets several requirements such as portability, a
variable granularity, some scalability, and a high level
of abstraction for end-users. As we will see, we will
introduce component life-cycle management mecha-
nisms in ours application developed with our frame-
work. We will also combined it with with a system
allowing on-line reconfiguration of data-flow.

3 The framework core

Since we’re proposing a component based architec-
ture, we will define what is a component in our system

and how it can interact with other entities to build an
application.

3.1 The component

According to szyperski’s definition [12], “A com-
ponent is a coherent package of software that can be
independently developed and delivered as a unit, and
that offers interfaces by which it can be connected, un-
changed, with other components to compose a larger
system”.

It means that, for our component architecture, we
should describe the way components will communi-
cate with each other, how they’re implemented, how
they’re initialized and how we can use them to build
applications. The main communication mechanism in
our components is based the signal/slot paradigm we
will introduce now.

3.1.1 Signal/Slot paradigm

Our solution is based on the signal/slot communication
model between components. This paradigm, mainly
used in user interfaces API, tends to reach other scopes
of specific programming. Some libraries are imple-
menting it, for example: QT , libsigc++ derived from
GTK+, sigslot and boost. Signals represent callbacks
with multiple targets. Signals are connected to some
set of slots, which are callback receivers. They are
triggered when the signal is ”emitted”. Signals and
slots can be connected and disconnected dynamically
at runtime and are managed. That is to say, connec-
tions are tracked by objects owning signals and slots.
They’re able to automatically disconnect signal/slot
connections when one of the object involved in com-
munication is destroyed. This allows the user to make
signal/slot connections without expending a great ef-
fort to manage the lifetimes of those connections with
regard to the lifetimes of all objects involved.

Once the communication mode is chosen for our
components, we can easily graphically represent them.

3.1.2 Representation of a component

Basically, a component in our system will be an entity
or object able to export by itself its interface which is
made of signals and slots. As we will see a little bit
later, we will often use both the terms of components
and objects to refer to the same thing, since the com-
ponents we will develop are objects. Such component
could be seen as in figure 2.

Since a component is also a piece of compiled code,
we should enter into the “box” and discuss about the
choices of implementation.

3.1.3 Choices of implementation

We chose C++ as a programming language for our
components. The signal/slot mechanism being already

Figure 2. Component view with its signals and
slots

implemented into several libraries, we chose one of
these libraries that were fitting our needs. We took Qt
as a library implementing signal/slots for several rea-
sons:

• Qt is a cross-platform library. It gives an API
(Application Programming Interface) which cov-
ers a lot of low level functionalities from operat-
ing system.

• The signal/slot mechanism developed allows con-
nections/disconnections on demand.

• The meta-object model implemented in some
Qt classes allows developing objects with self-
introspection capabilities, especially signals and
slots.

Our components will be objects deriving from classes
inheriting from QObject, which is the class manag-
ing meta-informations about objects.

3.1.4 Dynamic libraries

Components are compiled pieces of code stored in dy-
namic libraries. For our libraries we will need only
three specific entry points:

• one for describing objects stored in the library,
• one for instantiating an object contained in the

library,
• one for destroying an object instantiated from this

library.

Once components are stored in dynamic libraries, we
can load and use them on demand. Therefore, a com-
ponent may require some configuration so we need a
system to set component properties.

3.2 Components initialization

Components initializations are performed through
slots. However, these slots must meet a few require-
ments. They must have only one parameter and this
parameter belongs to a list of simple types such as
strings, numerical values and other components.

Further, we will establish a distinction between two
kinds of initializations depending on when they’re trig-
gered. Indeed, a slot call can also trigger a signal that
belongs to the same component; this last one may call

another slot if a signal/slot connection is established
between them. So, we have Pre-connection initial-
izations that are performed before the component is
connected with others and we have a second category
we call post-connection initialization that are triggered
after the component is connected to other ones. This
second one allows propagating initializations through
connections.

Since a component can be connected to other com-
ponents, we will see the different solutions we have to
connect components.

3.3 Laws of composition

In our system, there are two ways to make compo-
nents communicate with each other. One is what we
call an explicit composition and the other is an implicit
composition.

3.3.1 Explicit composition

An explicit composition is the easier way to make
components communicate to each other. It is explicit
because we know exactly how components are con-
nected. An explicit composition is performed by con-
necting signals to slots.

Using Qt signal/slot paradigm, connections are al-
lowed as soon as signals an slots share the same signa-
ture which is composed of the list of parameters types.

The mechanism described for instance is explaining
how to create logical glue between components. We
will further see how to switch to a higher level of ab-
straction that doesn’t require programming skills.

3.3.2 Implicit composition

There is another kind of composition between com-
ponents. This kind is called implicit composition be-
cause without component documentation it would be
difficult to exactly know how components are interact-
ing with each other. This composition is using slots
with only one parameter which is of type QObject*.
Qt can track down the inheritance tree from class
QObject.

It means we can initialize some components using
others. It allows them to have specific ways to com-
municate without using the signal/slot mechanism. It’s
then a kind of obfuscated communication : an implicit
composition.

3.3.3 The sheet concept

To sum up all we know about our components and their
composition in our system, we introduce the concept
of sheet. In a component based framework, an applica-
tion could be seen as a set of components working (or
more properly communicating) together. We choose
to name this set a “sheet”. Its graphical representation

may look like figure 3. A sheet is storing how compo-
nents are initialized and how components are commu-
nicating to each other.

Figure 3. A Sheet is a set of objects communi-
cating together

3.3.4 Macro-blocks

A sheet can also be used to represent a subset of com-
ponents working together. They will be called macro-
blocks. A macro-block is defined by global slots and
signals to which classical components of our system
can connect and interact. These global inputs/out-
puts are mapped to internal components of the macro-
block. It allows to make the macro-block like a black-
box, i.e., we can only give its inputs/outputs with-
out telling exactly what’s inside it. Another strong
point of macro-blocks is that we can limit the post-
initialization propagation to the components within the
macro-block and then, not affect the other components
of the application.

The recursivity issue: In our component model,
macro-blocks can contain macro-blocks. This lead
to the recursivity issue. Since macro-blocks can be
designed independently from applications, it means
component names inside a macro-block can possess
the same name as an object from the main application.
To solve this problem, a namespace is added to
components registered as parts of a macro-block.
This namespace is formed of the names of the macro-
blocks containing the component. For example, if
a component ’A’ is nested in a macro-block ’B’, its
name will be, when loaded by the system, ’B::A’.

However, sheets and macro-blocks are looking like
a quite static sight of an application. Within an appli-
cation, a component can have its own life cycle. This is
not something only a sheet can reflect. Indeed, an ap-
plication may have several behaviors or several states.
For example, an application may have a configuration
state different from its normal state or a calibration
step that is needed before reaching the configuration
state. We will then discuss this matter.

3.4 Extensions of composition mechanism

We will introduce two more mechanisms, the first is
consisting in using a state machine and the second is

dedicated to components life-cycle management.

3.4.1 Adding a state machine

Indeed, a sheet reflects a state of an application. An
application could be seen as a stack of sheets. We
then need a mechanism to switch between sheets. We
achieve this by adding a state machine. An application
could then be represented as in figure 4.

Machine

State

Shee
t1

Shee
t2

Shee
t3

Figure 4. Sheets can be activated one by one by
a state machine

Apart from strong automaton formalism, a state ma-
chine is, in our case, composed of states and transi-
tions. The transitions are described by an initial state,
a token and a final state. When the state machine re-
ceives a token, it may trigger a state change. The new
state can be a terminal state . If it is the case, the run-
time is forced to shutdown properly.

The sheets must be slightly modified to communi-
cate with the state-machine. It is achieved by using a
single object per sheet that is allowed to send a token
to the state machine. Each token sent to the state ma-
chine can make it switch to another application state
that will be represented by another sheet.

If we suppose a sheet (current sheet) is active and
that the state machine has received an identified to-
ken triggering a transition, the sheet switch mecha-
nism will follow these steps:

1. Disconnections: each signal/slot connection de-
scribed in the current sheet is destroyed. All com-
ponents specifically instantiated for the current
sheet are destroyed. At the end of this step, com-
ponents cannot communicate between each other,

2. Change of current sheet: the final state of the trig-
gered transition becomes the current sheet. Each
object that needs to be specifically set up for the
sheet is instantiated,

3. Pre-connection initializations: before connecting
signal/slot couples of the current sheet, compo-
nents can be initialized separately,

4. Connections: each signal/slot connection de-
scribed in the current sheet is activated. At the

end of this step, components can communicate
between each other according to the new scheme
designed in the current sheet,

5. Post-connection initializations: reserved to
initializations that propagate through different
components when they’re connected to each
other.

This described mechanism allows us to change the
data path between components. We then have a re-
configurable data-flow. As we have seen, some part
of life-cycle component management are introduced
in steps 1 and 2. We will detail it now.

3.4.2 Component life-cycle management

In our case, component life-cycle management means
we can instantiate and destroy components on demand.
We will adopt two types of strategy:

• There are components whose life-cycle is identi-
cal to application life-cycle. Those will be instan-
tiated at the beginning and destroyed at the end of
the application.

• There are components whose life span is smaller
than the application life span. They will be
managed through special initialization reserved
to sheets that allow to create or destroy compo-
nents.

A flag will be added to objects to know if their life
span is the same of the application life span or not.

Once we described the basis of our system basis, we
can now build over it a few layers of abstraction so that
an end-user without any programming skills can build
applications using components.

4 Layers of abstraction

To reach our goal, we added two layers of abstrac-
tion on top of our architecture. The first layer is a
medium abstraction level since it is consisting in writ-
ing an XML (Extensible Markup Language) file that
will be parsed and interpreted by a runtime managing
components. This layer will require some knowledge
of the XML syntax and, more specifically, knowledge
of the markups set we developed for our framework.
This step will be needed to reach a higher level of ab-
straction we will detail later. The second layer is a
graphical builder helping to design applications.

4.1 XML abstraction level

We choose to use XML, the eXtensible Markup
Language which is now a widely spread standard for
many applications. It helps us to formally describe an
application with all the concepts introduced before.

The XML formalization has several advantages
when it comes to rapid prototyping, compared to more
classical scripting languages:

• a convenient XML editor with a graphical user
interface allows the end user to design an applica-
tion without to master the syntax. Since the XML
parser is checking syntax, it’s reducing the num-
ber of syntax or semantic errors,

• building tools that create code or configuration
files from specifications is simplified by the use
of XML.

We will describe two sets of XML markups, one is
for the applications and the second one is for macro-
blocks. After this, we will explain how we will be able
to parse and interpret it.

4.1.1 Markups sets for applications description

In our case, the XML document describing an applica-
tion is composed of five blocks named:

• defines: listing pre-defined values for initializa-
tions, works like #define directives of C pre-
processor,

• libraries: naming the libraries the runtime will
need to load,

• objects: grouping objects (or components) in-
stantiated by runtime. Each object is referenced
by an object markup,

• sheets: describing the sheets stack, each sheet be-
ing embedded in a sheet markup,

• statemachine: describing the state machine that is
switching sheets when needed.

Each sheet is described by a set of four markups:

• tokensender: indicating the component allowed
to communicate with the state machine,

• preconnection: containing all components initial-
ization before connection,

• connection: telling which couple object/signal
will communicate with a couple object/slot,

• postconnection: containing initializations that
could propagate from one component to another.

For the application description, we do not rely on
any textual content but we are rather using the con-
tent model given by the Document Type Description
(DTD). It is describing how the elements within the
document are nested within each one. The organiza-
tion of our markups is summed up by the figure 5.
When a markup has specific attributes, those are writ-
ten in the same box under the name of the markup.

application

defines libraries objects sheets
statemachine

terminal

define

id type value

library

name

object

classname id persistent file

sheet

id

tokensender

object
preconnection connectionpostconnection

init

object slot type value

wire

objsource signal objdest slot

transition

stepA token stepB

Figure 5. Markup organization of an application
description

4.1.2 Markups set for macro-block description

As we already wrote, macro-block internals look like a
sheet. On the set of markups used to describe a macro-
block, there will be only a few changes:

• the section sheets is transformed into one sec-
tion named sheet where pre-connection initial-
izations, connections and post-connections are
stored,

• a section slots where inputs and their link to in-
ternal components are described,

• a section signals where outputs and their link to
external components are described.

The resulting markup hierarchy for macro-blocks is
exposed in figure 6.

block

defines libraries objects sheet signals slots

define

id type value

library

name

object

classname id file
preconnection connectionpostconnection

init

object slot type value

wire

objsource signal objdest slot

method

name object method

Figure 6. Markup organization of a macro-block
description

4.1.3 Inside the application runtime core

Once we have some libraries implementing compo-
nents and an XML description file of an application,
we can write a runtime aimed to specifically load ob-
jects from libraries and make them communicate ac-
cording to the description of the application contained
in the configuration file. The architecture of the run-
time core is only composed of four elements as seen in
figure 7:

• an XML parser, to read description of the appli-
cation,

• a State Machine manager: Its role is to switch
the sheets when it receives a token or shutdown
properly the application if it reaches a final state,

• a Communication manager: This one is connect-
ing and disconnecting components according to
the current state of the application,

• a Component manager: This element is loading
components from the libraries and is instantiating
them on demand.

XML Application description file

(independent from runtime)

Library 1

Library 2

Library n

Components librariesState Machine Manager

Communication Manager

XML Parser

Component Manager

Runtime Core

Figure 7. Runtime core with peripheral compo-
nent libraries and XML description file

At this point, to develop an application, one must
only be able to edit an XML description file to ini-
tialize and link the objects together. By editing such
file, we’re actually scripting the behavior of compo-
nents and, by extension, of our application. However,
we can reach one more level of abstraction to allow
end-users to build applications using this architecture.

4.2 Graphical interface

We then created a graphical user interface to handle
and manipulate components. The only thing required
apart the editor are the dynamic libraries containing
compiled code. Its allows a user with no program-
ming skills to develop an application by manipulating
graphical metaphors instead of scripting the compo-
nents behavior as we can see on figures 8, showing a
sheet being edited, and 9 showing a statemachine be-
ing edited.

5 A brief example of application

As a working proof of our framework concepts, we
developed a small application using our architecture.
This small tool is intended to provide an of the shelf
demonstration of a mixed reality application, embed-
ding a calibration camera step and an ARToolkit-like
fiducial tracking step. The application is starting with
a menu inviting the user to choose if he has to directly
start with the MR demonstration or if he should cali-
brate camera first.

Camera is calibrated using Zhang’s method [13]
developed in the OpenCVAPI. Fiducial tracking in
an ARToolkit-like manner [6]. This application is
running on a Toshiba Portege Tablet-PC using a
Logitech QuickCam USB camera as we can see on
figure 10(a). The whole is orchestrated by a Linux

3

2

1

1. Standard component (blue), disks are initializations,
2. Component linked with statemachine (yellow),
3. Connection between 2 objects

Figure 8. Graphical user interface in sheet edit-
ing mode

operating system.

5.1 Composition of the application in states term

Our application will be composed of four states
which are:

• Menu, a state where only the main menu of the
application is enabled,

• Calibration, the camera calibration step,
• MRDemo, the fiducial tracking demo step,
• End, the terminal state of the application.

This means we have a state machine like in figure
11, showing the tokens exchanged by sheets and
state-machine to switch from one sheet to another.

5.2 Sheets decomposition in components

The application needed various atomic blocks in or-
der to satisfy its purpose: from acquiring images with
the webcam, to calibration and visualization tools.
Each component organization within sheets can be
seen in figure 11. One can notice that some compo-
nents are used in several sheets, where some only ap-
pear within one sheet. This shows the utility of man-
aging component life-cycle.

We can sort all the employed components class
names by categories:

• Graphical User Interface: VLayout, Button, Im-
agePointSelector, VisualBell, GraphicsMixer,

• Data acquisition: CameraPWC,

• Image processing filters: RawCVImageConver-
tor, CheckerDetector, PatternDetector,

1

2

3

1. Initial state (pale green),
2. Final state (rose),
3. Transition with its token.

Figure 9. Graphical user interface in statema-
chine editing mode

• Pose parameters estimation: Checker2DTo3D,
ZhangCalibrator, PatternPoseEstimator,

• Parameters loaders/savers: CameraLogger, Pat-
tern3DLoader, OBJLoader,

• Token manipulation for state machine: Token-
Concentrator, TokenTrigger,

• Various useful components: CVImageTrigger,
TicCounter, GraphicNode.

Once the components are developed using our frame-
work, we can design the sheets and the statemachine
using our graphical interface. This last one will
generate the XML file describing the application.
Then, using the runtime, we can launch and execute
our MR demonstration.

5.3 Results

Figure 10(b) and 10(c) are showing to us the screens
configurations for the Calibration sheet (where the ap-
plication is using a classical calibration grid providing
camera intrinsic parameters) of our application and the
MRDemo sheet (based on fiducial - here square pat-
terns - tracking allowing the pose estimation of a vir-
tual character).

The system, using 6 libraries of components, can
run to process up to 17 frames per second on a standard
Pentium III 1.1GHz using a Linux operating system.
As we can see, we have several granularity for com-
ponents. Some are written with less than 10 lines of
code (for example the GraphicsNode) whereas some
of them are using hundreds of line code to process im-
ages like PatternDetector, PatternPoseEstimator. It is
showing the variability of the component’s granularity.
Since we’re using cross-platform libraries, the porta-
bility of our system is ensured. Indeed, we managed

to port our runtime on a Microsoft Windows operating
system to perform some tests.

6 Conclusion

We exposed a new component based framework.
Such component system is relying on signal/slot
paradigm for communications between entities. We
introduced the sheet and macro-block concept. They
are describing a part of an application. To circumvent
the static point of view offered by sheets and to man-
age component life-cycle in an application, we intro-
duced a state machine managing sheets. Once a state is
activated, the corresponding sheet is connected. This
also allows us to change the configuration of the data-
flow within an application.

Then, we introduced two more levels of abstraction
to help users with no programming skills to handle ap-
plication design. One is a medium level relying on
several XML markup sets and a runtime parsing and
interpreting it. The other one is a graphical builder
helping to design the applications. Such editor relies
only on the compiled libraries of components.

This project has produced very encouraging results.
We are now investigating some more general aspects
about the need of specific documentation for this kind
of components, the automatic checking of right com-
ponents life-cycle management and the introduction of
design patterns to help the end-user building applica-
tions from developed components.

References

[1] D. Abawi, R. Dörner, M. Haller, and J. Zauner.
Efficient mixed reality application development.
In 1st European Conference on Visual Media
Production (CVMP), pages 289–294, Londres,
15 Mars 2004. IEEE.

[2] M. Bauer, B. Bruegge, G. Klinker,
A. MacWilliams, T. Reicher, S. Riss, C. Sandor,
and M. Wagner. Design of a component-based
augmented reality framework. In Proceedings
of the International Symposium on Augmented
Reality (ISAR), pages 45–54, Oct. 2001.

[3] P. Cox and B. Song. A formal model for
component-based software. In HCC ’01: Pro-
ceedings of the IEEE 2001 Symposia on Hu-
man Centric Computing Languages and Envi-
ronments (HCC’01), page 304, Washington, DC,
USA, 2001. IEEE Computer Society.

[4] R. Dörner, C. Geiger, M. Haller, and V. Paelke.
Authoring mixed reality. a component and
framework-based approach. In First Interna-
tional Workshop on Entertainment Computing
(IWEC 2002), Makuhari, Chiba, Japon, 14-17
Mai 2002.

Menu Sheet

Calibration Sheet

State Machine

MRDemo Sheet

Figure 11. MR Demo application: state machine and sheets (since the End sheet is empty, it doesn’t appear
here). Components in yellow color are allowed to send tokens to statemachine. Initializations are represented
by the small discs linked to slots of components.

(a) Tablet-PC with its webcam.

(b) A successful calibration step.

(c) MR Demonstration step.

Figure 10. MR application example: hardware
and screen-shots.

[5] C. Endres, A. Butz, and A. MacWilliams. A sur-
vey of software infrastructures and frameworks
for ubiquitous computing. Mobile Information
Systems Journal, 1(1), January–March 2005.

[6] H. Kato, M. Billinghurst, I. Poupyrev,
K. Imamoto, and K. Tachibana. Virtual ob-
ject manipulation on a table-top ar environment.
In Proceedings of the International Symposium
on Augmented Reality (ISAR 2000), pages
111–119, Munich, Germany, Oct. 2000.

[7] F. Ledermann. An authoring framework for aug-
mented reality presentations. Master’s thesis, Vi-
enna University of Technology, 2004.

[8] A. MacWilliams, T. Reicher, G. Klinker, and
B. Brüegge. Design patterns for augmented re-
ality systems. In Proceedings of the Interna-
tional Workshop exploring the Design and Engi-
neering of Mixed Reality Systems (MIXER), Fun-
chal, Madeira, CEUR Workshop Proceedings,
Jan. 2004.

[9] W. Piekarski and B. H. Thomas. An object-
oriented software architecture for 3d mixed re-
ality applications. In The Second IEEE and
ACM International Symposium on Mixed and
Augmented Reality (ISMAR’03), Tokyo, Japan,
Oct. 2003.

[10] T. Reicher, A. MacWilliams, B. Brügge, and
G. Klinker. Results of a study on software ar-
chitectures for augmented reality systems. In
Proceedings of the International Symposium on
Mixed and Augmented Reality (STARS), Tokyo,
Japan, Oct. 2003.

[11] G. Reitmayr and D. Schmalstieg. An open soft-
ware architecture for virtual reality interaction.
In Proceedings of the ACM symposium on Vir-
tual reality software and technology, pages 47–
54. ACM Press, 2001.

[12] C. Szyperski. Component Software - Be-
yond Object-Oriented Programming. Addison-
Wesley, Harlow, England, second edition, 2002.

[13] Z. Zhang. Flexible camera calibration by view-
ing a plane from unknown orientations. In In-
ternational Conference on Computer Vision, vol-
ume 1, page 666, Corfu, Greece, Spetember, 20-
25 1999.

